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The change in density of states and transmission resonance energy shifts

have been calculated for a double-barrier single-quantum-well heterostructure

by placing a scattering center in the middle of the well and representing it by (1)

a thin barrier of variable height and fixed width or (2) a delta-function potential

of variable strength. It is found that the energies of the even resonance states

shift towards the higher energies and states get broader as the height of the thin

barrier increases. Similar behavior is observed for the delta-function potential

as the strength of the delta-functinn potential increases. The peak value of the

density of states versus energy plot are reduced for even resonance states due

to the broadening of these states. The physical processes related with these

behavior are discussed. Moreover, there are no changes in the odd resonance

states because of the nature of their wave fur.c:ions in the well rewiun of the

resonant tunneling structure.
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INTRODUCTION

The progress of semiconductor fabrication technology, particularly the

molecular beam epitaxy (MBE), has permitted the construction of structures

and devices whose properties are dominated by quantum interference effects.

Recently, very narrow potential barrier profiles have been produced in GaAs

/ AIGaj_.As superlattices. 1' 2 The intentional doping has been implemented

by positioning Si donors and Be acceptors in precise numbers during the MBE

growth of GaAs layers. This so-called sheet-doping ( or delta-doping) technique.

originally proposed by Wood et al, has been applied in advanced semiconduc-

tor device techniques. The confinement of donors or acceptors to selectively

doped GaAs /AlGaj_,As heterostructures leads to high mobilities and to high

two-dimensional carrier densities. Since the early studies by Chang,Tsu and

Esakil - of resonant tunneling through quantum-well states and negative differ-

ential resistance in double barriers heterostructures, there have been numerous

investigations of one-dimensional resonant tunneling structures (RTS) and quan-

tum wells (QW). These RTS and QW are not only important in microdevices

but their study involves a great deal of basic physics. Most of the theoretical

investigations of the static properties of the RTS have been limited to the cal-

culation of iransmission coefficients through the interfaces of the RTS. However,

in recent years it has been realized that the study of the eicctronic density of

states of RTS is equally important due to the applicability of RTS and QW in

optical devices.7 It has also been noticed that the density of states provide a

better representation of states in comparison with the transmission coefficients
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since there are some circumstances where transmission coefficients do not exist.

There have been different approaches to study the electronic density of states

of RTS. For example, Bahdr and coworkers s calculated the local density of states

by means of Green's functions. Their calculations were for the RTS where the

two barriers are represented by two delta(6) -function potentials. and later they

included the finite width for the barriers in their calculations. The global density

of states from the local density of states of Ref. 8 can be shown to be identically

zero. Bloss9 has calculated the wave function in the well region of the RTS under

bias. He has shown that the iutegral value of the square of the wave function

over the well region of the RTS and the density of states are correlated. Kim and

Arnold'" have also-performed some calculations for the local density of states

using the nonequilibrium tunneling theory of Caroli et al" and the scattering-

theoretic Green's-function technique with a simple Hamiltonian. However, none

of these investigations have considered the effect of a scattering center on the

density of states.

A model calculation of the electronic states of a superlattice of period a in-

terleaved with a periodic array of 6-function impurity centers has been reported

by Beltram and Capasso 12 , who found that through a judicious choice of the

width of the quantum well and location of the impurity, the width of the mini-

bands could be controlled. Earlier, Stone and Lee 13 had considered the effect E3
C]

of inelastic scattering on tunneling resonances in one dimension.

Recently, we presented a simple technique to calculate the change in the
uodes

global density of states of RTS.14 '6 The technique described in Refs. 14 and I/or

_ _ _ .%

'.4''



15 is suitable for calculating the global density of states for any potential profile

within a box. This density was calculated for the RTS iW the box and compared

with the density of states of the empty box. We found that the states are piled

up at the resonance energies and pushed away in the energy regions away from

the resonance energies. A plot of the density of states versus energy shows a

peak at the transmission resonance energies if the resonance is sharp. Otherwise

the peak of this plot is shifted from the transmission resonance energy. A linear

decrease in the resonance energy and broadening of the states as a function of

bias voltage are observed.15 For an asymmetric RTS, the plots of transmission

coefficients and the change in density of states have left-right symmetry with

respect to the interchange of the two barriers of the RTS. This symmetry is

broken in the case of an asymmetric RTS under bias.

In this paper, we have used an extra thin barrier or a 6-function potential

in the well to describe the perturbation potential of a scattering center and

study its effect on the transmission and change in the global density of states.

The corresponding changes in the bound states of the RTS are important in the

interstate transition studies. It is found that the extra thin barrier and 6-function

potential in the middle of the well moves the even bound states up, while the odd

states remains unchanged. The widths of the even states get broader as the thin

barrier height increases or the strength of the 6-function potential increases. The

density of states for the energies of even states is reduced due to the broadening

of the states.
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CALCULATIONAL TECHNIQUE

The method to calculate the transmission coefficients T(E) as function of

electron energy E through a potential profile such as RTS are well described in

the iiteracures.1 '17 To -aculated the global density of states, the procedure laid

out in Refs. 14 and 15 is followed here. For the sake of completeness, a brief

description to calculate the density of states is given below. The local density of

states is

N(E,x) =Z (E- Ej)IT(x.E j)I 2  (1)

where k(z, Ei) and E, are the eigenfunctions and eigenvalues, respectively. The

global density of states obtained by integrating Eq. (1) will be identically zero.8

Therefore, a different method to calculate the global density of states,

N(E) = Z6(E - Ei),

has been adopted here. In this way, a change in the spacing of energy levels

brought in by RTS contributes to the density of states without involving any

particular spatial region. Let us consider a box of length L and walls extended

to infinity. The eigenstates of this box, al where n is an integer, are equally

spaced in k-space, and the inverse of the spacing, which is the density of states, is

constant for a given L and increases linearly with L. The spacing of eigenstates

becomes disturbed by a small RTS in the box. This change in the spacing

brought by the RTS has been calculated to find the change in the global density

of states. The RTS in the box produces a phase change in the eigenfunction.

The solution of the Schr6dinger equation for an electron in a box extending from



0 to L is 2y-jsin(-2x). and the solution for an electron in a box with the RTS

is Asin( - w)x with A as a normalization constant. Depending upon the the

position of the RTS in the box. the phase difference, o, forms different patterns.

where each pattern is called a subdensity' 4 The sum of changes contributed by

all the subdensities gives the change in the global density of states due to the

RTS.

A schematic illustration of the q-Iructure considered here is given in Fig. 1.

An RTS of a few hundred A total width with an extra thin barrier or a b-function

potential in the well region is placed in a box of length L. The -alue of L ranges

from 106 to 108 A. depending upon the resolution needed for resonance states.

The RTS is placed at a distance x, from the left wall of the box. The two barriers

of the RTS extend from x, to zt +at and zi +at +d to x, +at +d+a 2 , where

d is the well width and a, and a2 are widths of the left and right barriers. The

heights of the barriers are VL and VR. A thin barrier of variable height and fixed

width, b, ranging from xi +at + -b to x, +a, + 4 where b<d, or a 6-function

potential at z +at +c(< x, +a, +d), in the well has been considered as an extra

potential profile in the RTS. The eigenvalue condition, namely the vanishing of

the wave function at x=L, can be given as

D(k) = A 4 (k)sink(L - X2 ) + B 4 (k) cosk(L - x.) = 0, (2)

where X2 = xt+a1 +d+a2 and A 4 (k) and B 4(k) are the amplitudes of the envelop

wave function in the region from x = X2 to x=L. The amplitudes A 4 (k) and B4(k)

can be calculated easily by requiring wave functions and their derivatives to be

continuous across the interfaces of the RTS. Here k r and m* is ther d *is e



effective mass of the -lectron. A constant value of rn" (=0.067m., with ne as

the electron mass) has been taken throughout the structure in our calculation

for simplicity. For the case of a different effective mass. the derivative of the

wave function divided by the effective mass of the region should be continuous

instead of the derivative alone. L - 2 ' The positions of the resonance states get

lowered slightly, but the widths of the states broaden considerably for the case

in which one considers different effective masses.2 1 So, in the calculation where

a comparison with the experiment, especially the dwell time, is undertaken, the

correct value of the effective masses of different materials should be considered.

The change in the density of states in k-space in comparison with a free box

can be calculated as

- 1 L (3a)
Ak,, nir'

and hence,

AN(E) = (3b)

Here Ak, = k, - k,-_. and k, and k,, are calculated from Eqn. (2). As

mentioned earlier, AN(k) or zAN(E) should be calculated for all the subdensities

and summed over all subdensities to give the change in global density of states.

RESULTS AND DISCUSSION

The structure under investigation is shown in Fig. 1 for an asymmetric RTS

in a box. Parameters used in the calculation are as follows: for a symmetric RTS,

at = a 2 = 50 . d=150 and VL = VR=200 meV, and for an asymmetric RTS,

a, = a 2 = 50 A, d=150 A, VL=200 meV and VR=180 meV. The position of the

symmetric and asymmetric RTS is z =L, at which two subdensities are formed.

2I|



For the parameters described above, there are three resonances at 16.5= 0.0434,

64.87-± 0.540 and 140.76± 3.72 meV for the symmetric RTS. and 16.33= 0.0533.

64.1± 0.661 and 138.8±- 4.49 meV for the asymmetric one. The escape times for

these three resonance states, t,, = -, where 6E is the width of the states. are

15.2, 1.22 and 0.177 ps for the symmetric RTS, and 12.3. 1.0 and 0.147 ps for

the asymmetric one, respectively. It is clear that as the states move closer to the

surface of the well, the escape times get smaller and smaller. An electron at the

state deep inside the well takes more time to tunnel through the barriers than

the one at the state closer to the surface of the well, which is a signature of the

time-energy uncertainty relation.

On the left side of the Fig. 2, the results for transmission T(E) and change in

density of states, AN(E) for the symmetric (solid curves) and for the asymmetric

RTS (dashed curves) with a thin barrier of 15 A width and 10 meV height as an

extra potential profile are shown in the first resonance energy range. For the sake

of comparison, results without an extra potential profile (dotted for symmetric

and dot-dashed for asymmetric RTS) are also plotted in Fig. 2. Corresponding

results for a 6-function potential ( 100 meV.A strength in the middle of the well)

as an extra potential profile are displayed on the right side of the Fig. 2. It is

clear that the energy of the first resonance state shifts towards the higher energy

for both the thin barrier and 6-function potentials. As mentioned earlier, the

width of the state which shifts towards the surface of the well should increase

from the time-energy uncertainity relation. This behavior is not quite apparent

from the Fig. 2 because of the narrowness of the state. The peak value of
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AN(E) is reduced in comparison with the peak value of AN(E) for the RTS

without an extra potential profile. However. T(E) attains the value of unity

for the symmetric RTS and reduces to a definite value less than unity for the

asymmetric one. The reason for the change in AN(E) is that a quantity

Ar = f dEAN(E) (4)

should have the value of unity for a single bound state. For AN to be unity, a

lower value of AN(E) at the resonance energy makes it clearer that the width of

the resonance has increased for a finite value of the thin barrier height and finite

strength of the 6-function potential. A further discussion of the quantity AN

is given later in the text. Although there is no direct correlation between the

width and height of the thin barrier and the strength of the 6-function potential,

a correspondence between them can be derived from Fig. 2.

The results for the second resonance state are shown in Fig. 3. In this figure

the change in resonance energy due to the thin barrier is very small, and there

is no change at all for the 6-function potential. The reason for such behavior

can be attributed to the nature of the wave function of the second resonance

state. A normalized wave function of the first, second and third resonance states

with a thin barrier height and width of 65 meV and 15 A, respectively (upper

panel), and with a 6-function potential of strength of one eV-A (lower panel) as

an extra potential profile to the RTS, are shown in Fig. 4. As expected, the

wave function of the second resonance state vanishes in the middle of the well,

and an extra potential profile present in the middle of the well remains unseen

by it. Due to the finite width of the thin barrier, the envelop wave function
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gets affected over a spatial range, where the small change in resonance energy

is a result of such effect. Moreover. the 6-function potential is confined to a

particular position in spatial dimension and affects only the derivatives of the

wave function. If the position of the b-function potential is at a point ( middle of

the well) where the wave function of the second resonance state vanishes, then its

effect will be absolutely zero on the second resonance state. The results for the

third resonance are similar to those of the first resonance due to the similarity

in their wave functions, and are not shown here for brevity.

The change in resonance energy and width of the resonance state and the

change in density of states AN(E) at the resonance energy for the first and

second resonance states as a function of thin barrier height ( 15 A width) and

as a function of the strength of the 6-function potential at c=O are shown in

Figs. 5 and 6. In Fig. 5, the change in energy of the first resonance state for the

symmetric and asymmetric RTS are indistinguishable. Moreover, the increase in

the width of the resonance is more pronounced for the asymmetric RTS than the

symmetric one. It is clear from earlier discussions (about the width and escape

time) that the escape time from a state is less for an asymmetric RTS than

from the corresponding state of a symmetric RTS. As we mentioned earlier,

the peak value of AN(E) decreases for a finite height of the thin barrier and

finite strength of the 6-function potential. This decrease in AN(E) is correlated

with the increase in widths of the resonance states throi' ,h the quantity AN

[Eq. (4)], but the variation of the width as a function ot thin barrier height

and strength of the 6-function potential in Fig. 5 is entirely different than the
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variation of AN(E). The tails of the Gaussian distribution persist longer for the

broader distribution and contribute more to the area of the distribution. Hence.

the increase in the width does bring the peak value of AN(E) down. but the

condition AN=1 makes it decrease faster than the increase in the width. The

energy of the first resonance state increases exponentially as a function of the

thin barrier height and the strength of the 6-function potential and approaches

the second resonance state. In Fig. 6, as discussed earlier, changes brought

about by the thin barrier and 6-function potential are negligible. So. the extra

potential profile could cause the first resonance state to merge into the second

resonance state. The changes in the third resonance state are similar to those in

the first one.

CONCLUSIONS

n conclusion, we have studied the effect of a scattering center on the trans-

mission and change in density of states for both symmetric and asymmetric

resonant tunneling structures by representing it by a thin barrier of variable

height and fixed width, and by a 6-function potential of variable strength, and

placing it in the middle of the well. It is found that because of the extra profile

the resonance energies are shifted up, and the widths of the resonance states

are increased for the even states. The change in width is the signature of the

time-energy uncertainity relation. There are practically no changes in the odd

states because of the nature of their wave functions. The peak value of a plot of

the change in density of states versus the energy decreases as the height of the

thin barrier or the strength of the b-function )otential increases. This decrease
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is related to the change in the width of the resonance states.

ACKNOWLEDGMENTS

One of the authors (MLR) is grateful to Dr. D.J. Nagel of the Naval Re-

search Laboratory for providing the facilities to carry out a part of this work

during the summer of 1989. This research was supported by the Office of Naval

Research.



14

REFERENCES

1. K. Ploog, J. Cryst. Growth 81. 304 (1987).

'2. H.P. Hjalmarson. J. Vac. Sci. Technol. 21, 524 (1982);

Superlatt. Microstructures 1. 379 (1985).

3. G.E.C. Wood, G. Metze, J. Berry and L.F. Eastman,

J. Appl. Phys. 51, 383 (1980).

4. R. Tsu and L. Esaki, Appl. Phys. Lett. 22. 562 (1973).

5. L. Esaki and L. Chang, Phys. Rev. Lett. 33. 495 (1974).

6. L. Change, L. Esaki, and R.Tsu, Appl. Phys. Lett. 24. 593 (1974).

7. W. Trzeciakowski and B.D. McCombe, Appl. Phys. Lett. 55, 891(1989).

8. T.B. Bahder, J.D. Bruno, R.G. Hay and C.A. Morrison, Phys. Rev.

B 37, 6256 (1988); J.D. Bruno and T.B. Bahder, ibid 39, 3659 (1989).

9. Walter L. Blos' , 3. Appl. Phys. 66, 1240 (1989).

10. G. Kim and G.B. Arnold, Phys. Rev. B 38, 3252 (1988).

11. C. Caroli, R. Combescot, P Noziires and D. Saiut-JamesJ. Phys.

C 4, 916 (1971): ibid 4, 2611 (1971); ibid 5, 21 (1972).

12. F. Beltram and F. Capasso, Phys. Rev. B 38, 3580 (1988).

13. A.D. Stone and P.A. Lee, Phys. Rev. Lett. 54, 1196 (1985).

14. W. Trzeciakowski. D. Sahu and T.F. George, Phys. Rev. B 40, 6058 (1989).

15. L.N.Pandey, D. Sahu and T.F.George, Appl. Phys. Lett.. 56, 277 (1990).

16. G. Bastard. Wave mechanics applied to semiconductor heteroetructures.

Monographies de Physique. les editions de physiqueAvenue du Hoggar.

Zone Industrielle de Courtaboeuf. B.P.112. 91944 Les Ulis Cedex.Ftance.



15

17. B. Ricco and M.Ya. Azbel, Phys. Rev. B 29, 1970 (1984).

18. R.A. Morrow and K.R. Brownstein. Phys. Rev. B 30. 678 (1984).

19. G. Bastard. Phys. Rev. B 24. 5693 (1981).

20. L.N. Pandey, D. Sahu and T.F. George, Solid State Commun. 72. 7 (1989).

21. H. Gau, K. Diff, G. Neofotistos and J.D. Gunton, Appl. Phys. Lett.

53, 131 (1988).



16

FIGURE CAPTIONS

Fig. 1. Schematic illustration of an asymmetric RTS structure with an extra

potential profile in a box. The position of the RTS in the box is X1

from the left wall. The widths and heights of the two barriers of the RTS

are, respectively, al & a2 and VL & VR, and the well width is d.

A thin barrier of width b and variable height and a 6-function potential

as shown are considered as an extra potential profile in the RTS.

Fig. 2. Transmission coefficient T(E) and change in density of states AN(E)

for a symmetric (solid curve) and asymmetric (dashed curved) RTS

with a thin barrier of 15 A width and 10 meV height and 6-function

potential of 100 meV.A strength, compared with T(E) and

AN(E) for a symmetric (dotted curve) and asymmetric (dot-dashed curve)

RTS with zero thin barrier height and zero 6-function potential strength.

The energy range shown is in the neighborhood of the first resonance state.

Fig. 3. T(E) and AN(E) for the second resonance state. The different curves

are described in Fig. 2.

Fig. 4. Wave functions of the first (solid curve) ,second (dashed curve) and third

(dotted curve) resonance states for a thin barrier of height 65 meV and

width 15 A( top panel) and a b-function potential of strength

one eV.A ( bottom panel).

Fig. 5. Change in resonance energy, width of the resonance state and peak

value of the AN(E) versus E plot of the first resonance state for the

symmetric ( solid circles) and asymmetric ( solid triangle) RTS as a
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function of thin barrier height (15 A width) and the strength of

6-function potential.

Fig. 6. Same as in Fig. 5 but for the second resonance state.
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